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I. General Description

This Excel program simulates orbital motion, by propagating iterated straight-line motion over short time intervals, from an initial position and velocity, using Newton’s Law of Gravitation and mechanical equations. The central body is located at the origin, and the coordinate system is such that the X-Y plane is equatorial (the X-axis may be regarded as pointing toward the Vernal Equinox), with the Z-axis pointing north.


The program is fundamentally a physics model. At the beginning of each iteration, the orbiting body is regarded as having a momentary position and velocity, and the gravitational force, acting upon it, is calculated from its mass, the central body’s mass, and the distance between these bodies. The acceleration, of the orbiting body, can thus be calculated from its mass and the gravitational force acting upon it. During the time interval, this acceleration results in a new velocity, and a new position, which position and velocity then define the starting condition, for the next iteration. By these sequential straight-line motions, the overall orbital motion is described.
II. Input Methods

1) By initial State Vector components (X0, Y0, Z0; Vx0, Vy0, Vz0): 

This is the most basic method, since it is in accord with the nature of the physics model, and it is the default state of the program. X0, Y0, and Z0 represent the initial x, y and z Cartesian coordinates of the orbiting body’s position, and Vx0, Vy0 and Vz0 represent the initial x, y and z components of the orbiting body’s velocity. These six quantities, together, represent the starting condition from which the orbit will be generated, and they can be entered in Column A of the main page (Sheet1).

Using this method of defining the orbit, “no” or “n” should be in Cell A26.
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2) By Orbital Elements:

This is probably the most practical method. “Orbital Elements” are six numbers which describe, geometrically, the size, shape and orientation of an entire orbital path, in 3-D space. In order, these are:

Semimajor Axis (a) – Describes the size of the orbit; the major axis is the longest dimension of an ellipse, and the semimajor axis is one-half of that; for a circle, its semimajor axis is equivalent to its radius

Eccentricity (e) – Describes the shape of the orbit; e=0 describes a circle, 0<e<1 describes an increasingly flatter ellipse, e=1 describes a parabola, e>1 describes an increasingly flatter hyperbola
Inclination (i) – The angle between the orbital plane, and the equatorial plane of the central body (the X-Y plane)
Longitude (or Right Ascension) of the Ascending Node (Ω) – The angle (using standard Cartesian representation, on the X-Y plane) between the X-axis (the Vernal Equinox), and the point at which the orbit crosses the central body’s equatorial plane (the X-Y plane), going north (positive Z-axis)
Argument of Periapsis (ω) – The angle, (using standard Cartesian representation, on the orbital plane) between the Ascending Node, and Periapsis (the point of closest approach to the central body)

True Anomaly (ν) or Mean Anomaly (M.A.) – Describes the position of the orbiting body, in its orbit; True Anomaly is the angle (on the orbital plane, and increasing in the direction of motion) between Periapsis and the current position; Mean Anomaly is an angular representation of the fraction of the orbital period, having elapsed between Periapsis and the current position (e.g. – M.A.=270deg., means that the current position is such that the orbiting body has been traveling, since Periapsis, for three-fourths of the amount of time necessary for it to complete an entire orbit); for circular orbits, True Anomaly and Mean Anomaly always have the same value, but they diverge for points in an eccentric orbit, since in such cases, the velocity (and thus the time spent) is different for different locations in the orbit

To define an orbit by its Orbital Elements, enter them in OEcalc (the last sheet, with the red tab at the bottom), in the Input section on the left.
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On the right side of this page, the output will be displayed, consisting of a calculation of the initial State Vector components, which would generate – from that coordinate point and that velocity – an orbit having those Orbital Elements.


Enter “yes” or “y” in Cell A26 of Sheet1. This will instruct the program to use the State Vector components output by OEcalc, rather than those entered in Column A of Sheet1, to generate the orbit. The State Vector component entries in Column A of Sheet1, will remain unchanged, but they will not be used, since they are there for manual entry of initial State Vector components, using method #1, above.

There are included, on the OEcalc page, some “Auxiliary Calculators” to help determine what Orbital Elements to input, if particular orbital characteristics are desired. For example, if you wish to define an orbit with a specific periapsis distance (Pedist) and apoapsis distance (Apdist), then you can enter these quantities into the Auxiliary Calculator designed for such inputs; its output will show what semimajor axis (a) and eccentricity (e) should be entered in Column A (these can be copied, and pasted). Each Auxiliary Calculator has a particular set of combinations, for input and output (some of which are not actually necessary for determining desirable Orbital Elements, but may be of some use for other purposes), so as to enable any desired orbit to be easily produced.
III. Additional Necessary Input

In order to calculate gravitational forces, necessary to the simulation, the mass (M) of the central body must be entered in Cell A8 of Sheet1, and the mass (m) of the orbiting body must be entered in Cell A11 of Sheet1. If the mass of the orbiting body is not known, then a decent approximation should suffice; an inaccurate number will not affect the acceleration, and so the display of orbital motion, but some of the other output numbers will be inaccurate.

The time interval is essential to the quality of the simulation, since the physics model supposes that the orbital motion can be well approximated by iterated straight-line motion over sufficiently short time intervals. If the time interval is too long, then the approximation will not be a good one. Enter the time interval in Cell A15 of Sheet1. Since the default configuration of this program is based upon Earth’s orbit around the Sun (although quite simplistically defined, derived merely from its periapsis distance and velocity), therefore the default time interval has been set to one day, measured in seconds, with the default total time being five years, at this rate – that is, 1825 iterations. If the orbit is elliptical, then an easy way to set the time interval, is to make it equal to the orbital period (in seconds), divided into 1825 intervals (type: ”=A89/1825” in Cell A15).

Although the time interval must be defined in seconds, it may be desirable to display the elapsed time, during the orbit, in other, more meaningful, units. Cell A18, in Sheet1, enables a selection of what units to use, for displaying (in Column B) elapsed time. The available choices are seconds, minutes, hours, days, weeks or years.


In Cell A21, of Sheet1, there is an option to use either constant time intervals, or time intervals adjusted dynamically, depending upon the location of the orbiting body, within its orbit. For most purposes, constant time intervals work well, and this is the default configuration; but for very eccentric orbits, the velocity varies considerably, so that the constant time interval would have to be very short, and so an impractical number of iterations would be required, in order to describe the complete orbit. Therefore, for elliptical orbits having eccentricity greater than about 0.75, it may be desirable to change Cell A21 to “no” or “n”. This will cause the time interval to be shortest at periapsis, where the velocity is greatest, and longer at greater distances and lesser velocities. Elliptical orbits having eccentricity up to about 0.99, can then be described accurately. Open orbits do not seem to require this adjustment (which is just as well, inasmuch as the method of calculating the time interval, dynamically, breaks down at an eccentricity of exactly one), so this option is likely to be necessary only for very eccentric elliptical orbits.
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IV. Output Displays

Regardless of which of the two input methods is used, for defining the orbit, its Orbital Elements (and some other related characteristics) will be calculated from the initial State Vector components (either those entered manually, using method #1, or those output by OEcalc, using method #2), and they will be displayed in Column A of Sheet1. If you used method #2, then these displayed elements should be identical to those which you entered in OEcalc; if you used method #1, then they may simply be interesting to examine.

In any case, this Excel program can thus be used as a conversion calculator, back and forth, between Orbital Elements and State Vector components. OEcalc converts from Orbital Elements to State Vectors, while the display of Calculated Orbital Elements, in Column A of Sheet1, represents a conversion from State Vectors to Orbital Elements, with its input depending upon what appears in Cell A26 of Sheet1 (“no” ( input is the direct entry of State Vector components, in Column A of Sheet1; “yes” ( input is the State Vector component output, from OEcalc).
[image: image4.jpg]

The main spreadsheet output consists of a display of several orbital parameters, as they change over time. These include:

Elapsed time

Position (x, y, z)

Orbital radius (Distance, ρ in spherical coordinates)

Other spherical coordinates (r, Θ, Φ)
Astronomical coordinates (Right Ascension, Declination), from the point-of-view of the central body
True Anomaly

Mean Anomaly

Total gravitational force (positive, toward the central body), and gravitational force components

Acceleration components, and centripetal (total; positive, toward the central body) and tangential (positive, in the direction of motion) accelerations
Velocity components, and tangential (total; positive=prograde) and centripetal (positive, toward the central body) velocities
Pitch angle of trajectory

Angular momentum (positive=prograde)
Kinetic energy, gravitational potential energy and total mechanical energy
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In Column A of Sheet1, there are some “Measurements.” These are similar to the Calculated Orbital Elements, and such, except that they are determined from the actual output data of the physics model (the above described, time-dependent orbital parameters), rather than being calculated from the initial State Vectors. They are for the purpose of evaluating how well the iterated motion corresponds to what should be the real, curvilinear motion; the indicated errors assume that the theoretical calculations are accurate.
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Also included, are three graphs, depicting the orbit projected onto one of the three principal Cartesian planes. The pink asterisk shows the initial position, the green line shows the first fifty points, plotted, and the blue line shows the points after that. This is to help visualize the orbit in three dimensions, and to distinguish prograde from retrograde orbits. 

Unfortunately, it may be necessary (depending upon the size of the orbit that you have defined) manually to scale the axes of the graphs. This is because, while Excel can "autoscale" its charts, it simply does so in such a way as to make all data visible. The result is that all ellipses would look about the same, extending to near the edge of the graph, in both dimensions, regardless of their comparative sizes or eccentricities. I do not know of any way to make Excel autoscale and also keep the graph dimensions square, so as faithfully to display eccentricity; so, this must be done manually. To scale each graph, right-click on one of the axes (away from anything else), and select "format axis"; then, click on the "scale" tab, and enter appropriate values for "minimum" and "maximum" (the total length of each axis should be the same, to keep it square). Then, do the same for the other axis.

Depending upon the characteristics of your computer monitor, it may be necessary, also, to adjust the graphs so that they appear square. To do this, click on each graph, and then drag its edges until the sides are of equal length). You may want to load a fresh copy of the program, and then adjust all the graphs in this way, and then save the program, so that thereafter, the graphs will not require further adjustment of this kind (unless, of course, you get a new monitor with different characteristics).
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V. How to start playing with the program

This Excel program is, among other things, a very effective means by which to learn about Orbital Elements – what each one is and how they relate to one another. In fact, that’s one of the main reasons that I created it. To start playing with it, do the following:
1) Select Cell A54, in Sheet1, then right-click and Copy.
2) Click on the OEcalc tab, then select Cell A7. Right-click and Paste Special…, then select “Values” and then “OK.” This will copy the value in Cell A54 of Sheet1, to Cell A7 of OEcalc. Notice that the output side of OEcalc now shows something meaningful.
3) Similarly, copy and paste the value in Cell A57 of Sheet1, to Cell A10 of OEcalc, and the value in Cell A76 of Sheet1, to Cell C7 of OEcalc.
4) OEcalc is now set up to generate, from Orbital Elements (method #2), the orbit which is currently generated from manually entered State Vectors (method #1).

5) Change Cell A26 of Sheet1 to “yes”. Virtually nothing should appear to change; since only the input method is now different, while the orbit is the same.

6) Change the true anomaly (Cell A22, in OEcalc), and notice the change on the graphs.

7) Change the eccentricity (Cell A10, in OEcalc), but keep it less than 1, and notice the change on the graphs. For higher eccentricities, you may get a cleaner graph line, if you type: ”=A89/1825” in Cell A15 of Sheet1, to generate only a single orbit. For very high eccentricities, it may be necessary to change Cell A21, in Sheet1, to “no”.
8) Change the inclination (Cell A13, in OEcalc), and notice the change on the graphs.

9) Change the longitude of the ascending node (Cell A16, in OEcalc), and notice the change on the graphs.

10) Change the argument of periapsis (Cell A19, in OEcalc), and notice the change on the graphs.

11) Now, if during step #7, above, you changed Cell A15, in Sheet1, then change it back to its original value of 86400. Then, change Cell A10, in OEcalc, to 1, and change Cell A22, in OEcalc, to 225. Notice the change on the graphs.
12) Change Cell A22, in OEcalc, to 270, and increase the eccentricity even more (you may have to increase the value in Cell A22 even more, too).
There you go. Have fun.

VI. Special Notes, for avoiding problems

1) Pay attention to units! Input distances are in meters, velocities are in meters per second, time is in seconds, mass is in kilograms. When entering input, be sure to use a number that represents the correct, appropriate unit of measurement.
2) A sufficiently short time interval is essential to the accuracy of the simulation. If the time interval is too long, then the simulation will not produce good, or expected, results. If necessary, you can extend the total time of the simulation, by selecting all the values in the last row, and then filling down as far as you wish (and have sufficient RAM to allow), but this will require also editing the Chart Source Data, for the graphs, and some of the formulas, for the Measurements, in order to reflect the additional data (replace “1827” by whatever is now the number of the last row).
3) Cell A15, in Sheet1, cannot be set to determine the time interval, automatically – by dividing the period by the number of iterations – if the eccentricity is greater than or equal to 1. This is because such an eccentricity defines an open orbit, which has no period upon which to base such a calculation; much of the spreadsheet will be filled with error indications. Enter a specific time interval, manually.
4) Check that Cell A21, in Sheet1, is set properly. When using non-constant time intervals, the time interval may be considerably shortened during some parts of the orbit, and this may result in the graphs’ displaying only a very short line (or nothing at all, if the very short line is outside the range of a graph). In this case, you can try lengthening the time interval (Cell A15, in Sheet1), or using constant time intervals, instead.
5) Graphs must be properly scaled. If the graph does not show the orbit as expected, or at all, this may be because the scaling of the graph axes has resulted in the orbit’s being outside the display range. You can check the periapsis and apoapsis (if appropriate) distances (Cells A76 and A79, in Sheet1, respectively), to see what range may be desirable to display, on the graphs.

6) Be sure that Cell A26, in Sheet1, is set correctly, in accordance with the input method being used. Especially, you cannot generate an orbit from Orbital Elements, if there aren’t any; much of the spreadsheet will be filled with error indications.
7) Generating an open orbit, from Orbital Elements, requires a periapsis distance. This is because open orbits have no semimajor axis (a). So, be sure that you have entered a periapsis distance, in Cell C7, if you are defining an orbit having e≥1, in OEcalc; otherwise, much of the spreadsheet will be filled with error indications.

8) Mean Anomaly cannot be applied to open orbits. If you are defining an orbit having e≥1, in OEcalc, then Cell C28 must not be set to “yes”, or “y”; otherwise, the calculation of State Vectors will fail, and much of the spreadsheet will be filled with error indications. Use True Anomaly, to define the current position, for open orbits. Also, regardless of which input method is used, the column in Sheet1, for displaying Mean Anomaly (M.A.), will not display meaningful numbers if the eccentricity is greater than or equal to 1.
9) Keep in mind that the displayed orbit is generated from the initial point – which, in the case of orbits defined by Orbital Elements, is determined from the specified True Anomaly or Mean Anomaly (Cell A22 or Cell C22, in OEcalc, respectively). If, for example, you are trying to generate a parabolic orbit, and you see only half a parabola, it may be because you have defined the True Anomaly as being zero, which is at periapsis; so, all you see is the orbit after periapsis. Try setting the true anomaly back a bit, like maybe 270 (90deg. before periapsis), to see the orbit both approaching, and receding from, periapsis (for very eccentric [flat] hyperbolic orbits, this may be too far back, so set the True Anomaly closer to zero, like maybe 315; experiment, to see what works).
If worse comes to worst, then close the program (without saving) and reopen it, to start again.
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